Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies.

نویسندگان

  • Matthias Garten
  • Sophie Aimon
  • Patricia Bassereau
  • Gilman E S Toombes
چکیده

Giant Unilamellar Vesicles (GUVs) are a popular biomimetic system for studying membrane associated phenomena. However, commonly used protocols to grow GUVs must be modified in order to form GUVs containing functional transmembrane proteins. This article describes two dehydration-rehydration methods - electroformation and gel-assisted swelling - to form GUVs containing the voltage-gated potassium channel, KvAP. In both methods, a solution of protein-containing small unilamellar vesicles is partially dehydrated to form a stack of membranes, which is then allowed to swell in a rehydration buffer. For the electroformation method, the film is deposited on platinum electrodes so that an AC field can be applied during film rehydration. In contrast, the gel-assisted swelling method uses an agarose gel substrate to enhance film rehydration. Both methods can produce GUVs in low (e.g., 5 mM) and physiological (e.g., 100 mM) salt concentrations. The resulting GUVs are characterized via fluorescence microscopy, and the function of reconstituted channels measured using the inside-out patch-clamp configuration. While swelling in the presence of an alternating electric field (electroformation) gives a high yield of defect-free GUVs, the gel-assisted swelling method produces a more homogeneous protein distribution and requires no special equipment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Reconstitution of a Voltage-Gated Potassium Channel in Giant Unilamellar Vesicles

Voltage-gated ion channels are key players in cellular excitability. Recent studies suggest that their behavior can depend strongly on the membrane lipid composition and physical state. In vivo studies of membrane/channel and channel/channel interactions are challenging as membrane properties are actively regulated in living cells, and are difficult to control in experimental settings. We devel...

متن کامل

Study of a Voltage-Gated Potassium Channel in Giant Unilamellar Vesicles

Studying the role of the membrane in cell excitability is challenging using cells because ofthe homeostatic feedbacks preventing the external control of the relevant parameters. Tocircumvent these difficulties, I developed a model system in which a voltage-gated channelwas reconstituted in a membrane where the composition, tension and geometry can becontrolled.I thus exp...

متن کامل

bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles

Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of...

متن کامل

Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes.

Solvent-free planar lipid bilayers were formed in an automatic manner by bursting of giant unilamellar vesicles (GUVs) after gentle suction application through micron-sized apertures in a borosilicate glass substrate. Incubation of GUVs with the purified ion channel protein of interest yielded proteoliposomes. These proteoliposomes allow for immediate recording of channel activity after GUV sea...

متن کامل

Patch-clamp study of liver nuclear ionic channels reconstituted into giant proteoliposomes.

Nuclear ionic channels (NICs) represent ubiquitous structures of living cells, although little is known about their functional properties and encoding genes. To characterize NICs, liver nuclear membrane vesicles were reconstituted into either planar lipid bilayers or proteoliposomes. Reconstitution of nuclear envelope (NE) vesicles into planar lipid bilayer proceeded with low efficiency. NE ves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2015